Activity: Vaccine Efficacy

The absolute risk of something happening over a specific time is the probability of it happening.

Example 1: According to the National Cancer Institute, 125 out of 1000 women will develop breast cancer during their lives. The absolute risk, $\boldsymbol{R}_{\boldsymbol{A}}$ of a women developing breast cancer is then:

$$
R_{A}=\frac{\text { the number of women that developed breast cancer }}{\text { the total number of women }}=\frac{125}{1000}=0.125=12.5 \%
$$

The relative risk ratio is the ratio that tells us how the probability that something will happen compares between two groups.

Example 2: There are two groups of people. Group A has 50 individuals that are 30 years and older. Group B has 20 individuals that are 29 years old and younger. A total of 15 people in group A snore. Only one person from group \boldsymbol{B} snores. What is the relative risk ratio of snoring when comparing groups \boldsymbol{A} and \boldsymbol{B} ?
Solution: Let us first calculate the probabilities that a person in a specific group snores. In group A 15 out of 50 people snore. The probability $\boldsymbol{P}(\boldsymbol{A})$ that one person snores is:

$$
P(A)=\frac{\text { the number of people in A that snore }}{\text { the total number of people in group } A}=\frac{15}{50}=\frac{3}{10}=0.3=30 \%
$$

Similarly, in the case of group \boldsymbol{B}, the probability $\boldsymbol{P}(\boldsymbol{B})$ will be:

$$
P(B)=\frac{\text { the number of people in } B \text { that snore }}{\text { the total number of people in group } B}=\frac{1}{20}=0.05=5 \%
$$

The relative risk ratio, \boldsymbol{R}_{R}, is the ratio that tells us how the probability that something will happen compares between two groups:

$$
R_{R}=\frac{P(A)}{P(B)}=\frac{30 \%}{5 \%}=6
$$

The relative risk ratio of snoring based on groups \boldsymbol{A} and \boldsymbol{B} is 6 . In other words, a person that is 30 and older is six times more likely to snore compared to a person younger than 30.
Note: the number of people in the two groups does not have to be the same.

Problem 1: The absolute risk of a non-smoker getting breast cancer over a lifetime is 12.5%. Smoking increases that risk by 20%. What is the relative risk ratio of contracting breast cancer over a lifetime between smokers and non-smokers?

The absolute risk reduction is the difference in outcomes between a control group and an experimental group (group that receives a treatment).

Example 3: Doctor Moreau tested a new medication (Serum A) on 1200 volunteers. He split the volunteers in two groups and recorded the results into the table below:

	total	negative outcome (death)
Control group	200	5
Exposed group	1000	10

The probability, $P(C)$, that a person from the control group died:

$$
P(C)=\frac{5}{200}=0.025=2.5 \%
$$

The probability, $P(E)$ that a person from the exposed group died:

$$
P(E)=\frac{10}{1000}=0.01=1 \%
$$

The absolute risk reduction, $A_{R R}$ is:

$$
A_{R R}=P(C)-P(E)=2.5 \%-1 \%=1.5 \%
$$

Remember: The risk is a probability of a negative outcome. In this example, the outcome is "death".
The relative risk reduction or the vaccine efficacy is a ratio that tells us how much risk is reduced in an experimental group compared to a control group.

$$
\text { the relative risk reduction }=\frac{\text { the absolute risk reduction }}{\text { the control group rate }}
$$

Problem 2: Show that the relative risk reduction, $\boldsymbol{R}_{\boldsymbol{R} R}$, in Example 3 is 60%.

Problem 3: Doctor Moreau tested Serum B on 5000 volunteers. He split the volunteers in two groups and recorded the results into the table below:

	total	negative outcome (death)
Control group	1000	20
Exposed group	$?$	100

Find the relative risk reduction for Serum B. Discuss the results.

Problem 4: Vaccine A prevents 19 people from contracting an infection when administered to 20 people. Vaccine B decreases your chance of contracting the same infection by 95%. Which one would you take? Why?

Problem 5: The results from the Phase 3 trials for Pfizer's Covid-19 vaccine is given in the table below.

	total	Covid-19
Control group	21728	162
Vaccinated	21720	8

Find the relative risk reduction in percents (the vaccine efficacy). What does the vaccine efficacy tell you?

Problem 6: The population of Canada in 2020 is about 38 million people. Using the data from Problem 5 find out:
a) How many Canadians could get infected with Covid-19 if no one is vaccinated?
b) How many Canadians could get infected with Covid-19 if they are all vaccinated?
c) According to official numbers, by Jan 12, 2021 Canada recorded over 668000 Covid-19 infections. Discuss how this number compares with the numbers in parts a and b. Why?

Problem 7: The results from the Phase 3 trials for Moderna's Covid-19 vaccine is given in the table below.

	total	Covid-19
Control group	15000	185
Vaccinated	15000	11

Find the vaccine efficacy in percents.

Problem 8: What would be the efficacy of the vaccine given in Problem 7 if the vaccinated group counted 25 infections instead of 11 ?

