4.4. Pythagorean Theorem

A right-angle triangle is a triangle containing a right angle $\left(90^{\circ}\right)$. A triangle cannot have more than one right angle, since the sum of the two right angles plus the third angle would exceed the 180° total possessed by a triangle. The side opposite the right angle is called the hypotenuse (side c in the figure below). The sides adjacent to the right angle are called legs (or catheti, singular: cathetus).

Math notation for right-angle triangle

The Pythagorean Theorem states that the square of a hypotenuse is equal to the sum of the squares of the other two sides. It is one of the fundamental relations in Euclidean geometry.

$$
c^{2}=a^{2}+b^{2}
$$

Pythagorean triangle with the squares of its sides and labels

Pythagorean triples are integer values of a, b, c satisfying this equation.

Finding the Sides of a Right Angled Triangle

Example 1: Find the hypotenuse. 毗

$$
\begin{array}{rlrl}
c^{2} & =a^{2}+b^{2} & \text { |substitute for } a \text { and } b \\
c^{2} & =(9.6 m)^{2}+(2.8 m)^{2} & \\
c^{2} & =92.16 m^{2}+7.84 m^{2} & \\
c^{2} & =100 m^{2} & & \\
\sqrt{c^{2}} & =\sqrt{100 m^{2}} & \text { |take the square root o } \\
\sqrt{c^{2}} & =\sqrt{100} \sqrt{m^{2}} & \\
c & =10 m & &
\end{array}
$$

Example 2: Find the missing side b.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} & & \text { |subtract } a^{2} \text { from each side } \\
c^{2}-a^{2} & =a^{2}+b^{2}-a^{2} & & \\
c^{2}-a^{2} & =b^{2} & & \text { |switch sides } \\
b^{2} & =c^{2}-a^{2} & & \text { |substitute for } a \text { and } c \\
b^{2} & =5^{2}-3^{2} & & \\
b^{2} & =25-9=16 & & \text { |take the square root of each side } \\
\sqrt{b^{2}} & =\sqrt{16} & & \\
b & =4 & &
\end{aligned}
$$

Practice 1: Find all the missing sides in each right angle triangle.

24

Challenge 1: Find x. 四 -

Area of Right Angled Triangle

The area of a triangle is equal to one half the base multiplied by the corresponding height: $A=\frac{b h}{2}$

Example 3: Find the length of the diagonal of a rectangle that has width $a=3$ and length $b=4$.

The diagonal of a rectangle is the hypotenuse of a right-angle triangle. Use the Pythagorean Theorem.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
c^{2} & =3^{2}+4^{2}=9+16=25 \\
\sqrt{c^{2}} & =\sqrt{25} \\
c & =5 \quad \text { The length of the diagonal is } c=5 .
\end{aligned}
$$

Challenge 2: What is the length $B D$ shown in the figure? 毗

Challenge 3: Find the area of a square whose perimeter is the same as the perimeter of the triangle shown below. :)

Challenge 4: Two concentric circles with the center at the origin are shown below. $A(4,3)$ is on the larger circle and $C D$ is 9 , what is the radius of the smaller circle? :-

Challenge 5: A rectangle with the area of $3 \sqrt{2}$ is inscribed into a square with the side length of $a+b$, as shown below. Find the length of the rectangles' diagonal d, if $a: b=2 \sqrt{2}: 3$.

